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Abstract—Two-dimensional melting and solidification problems are divided into three convenient classes and
a general method of solution for one of these is presented. The method utilizes the concept of a fictitious body
of constant geometry, in which is embedded the real body (whose dimensions are changing due to the change
in phase); the fictitious body is acted upon by a fictitious heat flux or (in some problems) a fictitious initial
temperature distribution. The problem thus formulated in terms of these unknown fictitious quantities results
in a set of integro-differential equations to be solved simultaneously, either numerically or in series form.
Two problems are considered in detail. In the first problem the melting of a finite, insulated slab with the
melt immediately removed is formulated and an example for a semi-infinite, insulated strip is given. In the
second problem the solidification of a finite, insulated slab with zero superheat is formulated and an example
for a specific cooling history is given. In both problems two-dimensional effects are introduced by spatial
variations of heating or cooling conditions, and short-time series solutions are developed.

1. INTRODUCTION

ProBLEMS of heat conduction in which a body undergoes a phase change during exposure
to a thermal environment have received a great deal of attention in recent years. Almost
all the problems which have been solved, however, have been restricted to one-dimensional
cases. The present paper deals with two-dimensional melting and solidification problems:
it presents a convenient classification of such problems, and a general method of solution
for a certain class. Two examples of problems in this class are treated; the first is an
ablation problem (the melt being immediately removed upon formation), the second is
a problem motivated by the solidification of castings. Illustrative problems for the other
classes are discussed.

The first published work on change-of-phase problems is that of Stefan [1] in his
study of the thickness of polar ice. A more general treatment, however, including the
most important known exact solution, that for the half-space z > 0 under prescribed
boundary temperature was given earlier {in the 1860°s) by Neumann. Neumann's solution
is characterized by similarity, that is, it is a function of the single variable (z/\/ 1), the
motion of the solid-liquid interface being proportional to \/ t. Several other solutions
of this type have been found [2, 3] but for boundary conditions such as those of pre-
scribed flux or radiation, solutions of this type are not possible.

Because of the difficulties of the problem, numerical solutions (for example [4-7])
and approximate analytical techniques (for example {8-10]) have been extensively used
in the literature.t The above cited works refer to one-dimensional problems, with the

+ For an extensive bibliography of papers in all aspects of heat conduction see [3].
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exception of that of references [7] and [10]. In [7], Springer and Olson have developed
a finite difference scheme for the case of a multi-phase, axisymmetric, finite tube, including
variable thermal properties and various boundary conditions. Poots [10] treats the two-
dimensional problem of the solidification of a liquid square initially at the melting
temperature Ty, and with all boundaries at a fixed temperature T < T,,. Assumptions
are made as to the general shape of the interface and as to the temperature distribution,
and the solution is obtained by means of the heat balance integral.

A different approach, which can be used both for numerical analyses and for the
construction of short-time solutionst in series form, has been recently introduced {11, 3}.
In this approach one deals mathematically with a fictitious body of known constant
geometry instead of the actual one whose boundary is unknown. An unknown fictitious
heat flux, and sometimes a fictitious initial temperature distribution are introduced.
The temperature field is obtained in terms of the unknown heat flux, and is then used
to satisfy the necessary interface conditions at some unknown location {corresponding
to the actual moving boundary} in the interior of the body. The original partial differential
boundary value problem is thus replaced by a coupled integro-differential problem
expressed in terms of the unknown heat flux and interface position.

The present paper presents an extension of this approach to two-dimensional problems.
Section 2 gives a general discussion of such problems, and presents a convenient classi-
fication in which three classes of two-dimensional problems are identified. For two of
these classes, illustrative solutions are constructed by means of an inverse process.
Complete solutions for an ablation and a solidification problem of the remaining class
appear in Sections 3 and 4, respectively.

2. GENERAL DISCUSSION AND CLASSIFICATION OF PROBLEMS

2.1. Interface conditions

The principal conditions which characterize change-of-phase problems are those
which hold at the interface separating the liquid and the solid regions. Let the equation
of this surface, in a two-dimensional problem, be z = J(x, t). Separate heat-conduction
problems exist in the liquid and the solid regions which are of course unknown since
the moving interface is unknown a priori and is one of the quantities to be determined.
The two problems, however, are coupled through the two interface conditions. The
temperature in both liquid and solid regions (T}, Ts, respectively) must be equal to the
melting temperature T,, there, and the difference in heat flux between the liquid and
solid region must be equal to the rate of heat absorbed per unit area during the phase
change; this rate, in turn, is proportional to the velocity of the interface. Mathematically
these conditions are

1, = 7:9 = T, (H
5 oT \ at z = J(x, 1)
od Ty 1 od -
il S kR = —— 2)
[1 +(ax> ][ks g } tosly 12

where k;, kg are thermal conductivities of liquid and solid, pg is the density of the sqﬁd,
and Lis the latent heat of fusion. Equation (2) holds for either melting or solidification;

+ Short-time solutions, sometimes referred to as starting solutions, are not only of interest in themselves
but are often useful for the start of numerical or approximate analyses; cf. Citron [12].
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in either case, the positive sign is to be used if motion of the interface into the solid
corresponds to a positive value of (35/ét), and the negative sign if motion of the interface
towards the liquid corresponds to a positive (¢g/0t). In the derivation of equation (2)
the heat-balance condition was simplified by the use of equation (1); see [7,21].

2.2. Criterion for the onset of melting

It is desired to devise a criterion for determining when and where a phase change
occurs on the surface of the body, only problems in which the phase change originates
at a boundary and proceeds into the region being considered. Clearly, no melting occurs
as long as T < T, throughout; but if a time is found after which a solution obtained
neglecting the change of phase somewhere exceeds T,, then melting will have started
and this solution is no longer valid. Let the solution obtained neglecting melting be
denoted by TP, ). Melting then starts at t = ¢, if and only iff

WP, <T, forall Pt < ¢, {3a)

Ty(Pg, t,) = T, for some Pp on the boundary, (3b)

and a number ¢ > 0 exists such that

T{Pg. t) > T, fort, <t <t,(1+¢) {3¢c)

If the temperature on the boundary is continuous, then equation (3¢) is obviously
satisfied whenever

& Th
Py 1) > 0. (3d)

Such will be the case in all problems considered in this paper.

If the prescribed surface conditions contain only continuous inhomogeneous terms,
then the use of criterion (3) is straightforward, since the solution obtained before melting
is indeed Ty. If, however, a discontinuity in these terms occurs {e.g. the example given
below, or that of Section 3, in which a discontinuous heat input is applied), then the
application of equation (3d) is rather laborious in two-dimensional problems. However,
it can be greatly simplified by noting that the initial effect of an arbitrary boundary
flux is one-dimensional, i.e. (67Ty/0tYPg,t) is initially the same whether the actual heat
flux is used or is replaced by a flux constant in space and equal to the actual flux at that
point, see {21}

As a specific example of the use of this criterion, consider the half space z > 0, initially
at zero temperature, with the following heating history:

OTy 0o O<t<t
—k 0,1) =
iz ©.9 {Qo'*’Qx t>t

where Q, and @, are constant heat inputs.

(4a)

1 In solidification problems all inequalities in equations (3} are of course reversed.
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The solution is

200/ (k). z ,
e ( X terfc 2\/(’“) ; O<t<t o
Ni&s -
200/ (xt). z 20kt —1)] z ‘ i
l X lerfc2 \/(Kt)+ P lerfcz-VT[;(i.:?ﬂ : >

where k = k/pgc and ¢ is the specific heat.
Let t’ be the time at which T{0,t) = T, that is,

['—E{{Iﬂz 4
~x\20,) (4¢)

It is desired to determine whether or not ' = t,. Equations (3a) and (3b) are satisfied

att = r, while
f Iy Qe ) ; o /1 Ko , )
{0 = ( nt, k\/[ﬂ(t—f)]’ (= (5a)

Comparison with (3d) shows that ¢ = ¢, if @, = 0, while ¢’ # ¢, if Q, < (. Indeed, in
the latter case, with o = \/(t,,/t),

¢/ _1\ ‘Y2 N2
9—1 = - f’fv,_,,,) or t,=1t -Qgigé . {5b}
Qo ot 1 Q05— Q1
with T=T,atr=1t,t,and T < T, for t' <t < t,,

2.3. Initial rate of melting

Consider the half space z > 0, with a heat flux Q(t) on the boundary z = 0, and the
melt instantaneously removed upon formation. A heat flux balance just before and just
after melting results in the equations:

oT
—k==0,17) = Q- (t5)

(6}
@.ﬂ 2 T + +
—k{1+ 5o ) | 5o @tn) = Q.(t,)— PSL (t )-
ox/ | ¢z
Letting t,, — t,, tn — 1, and subtracting the two equations, one obtains
PsL (lm) 0.0 —Q-(ty) = L(Q) (7a)

where #(Q) is the jump in flux at 7 = ¢,. Clearly, if ¥{Q) < 0 melting will not start.
Hence

if £(Q)< 0 no melting ;

17@ =0 ) =0;

’ © 7
e cp oo Q)
170>0 =22
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or

#(Q)

A= psL

(=t )+ ...; t—t, <ty

As an example consider the problem of Section 2.2; the short time solution is, from
[11],

4Q0 3
= (=1, . - s
J(t) Trpsl \/tm( WP =, € L, (8a)
for the case in which @, = 0, and, from equation (40),
=20t it <y, (8b)
psL

for the case in which @, > 0.
In view of the fact that the initial behavior is essentially one-dimensional, equation
(7b) holds for two-dimensional problems as well.
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FiG. 1. The finite melting or solidifying slab.

24. Classification of two-dimensional melting problems
It is convenient to classify two-dimensional melting problems according to the
initial behavior of the melt region.t Considering the slab of Fig. 1, the following three
categories may be distinguished in order of apparent increasing analytical difficulty.
(1) Melting begins simultaneously at t =t, for all |x| < a. All one-dimensional
problems belong to this classification.
(2) Melting begins in a number of segments of non-zero length Ax; in the region
[x| < a, with

ZAX;(ZQ. i=1,2,...,n.
1

(3) Melting begins at one isolated point at least in the region |x| < a.

¥ Note that melting starts at the surface in problems such as those considered here, in which no internal
heat generation is present.
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Simple illustrations of problems in these categories are the following: Consider a
semi-infinite strip initially solid at the melting temperature 7T,,. If a heat flux positive for
all [x| < a is imposed on the boundary at a time t = 0, melting begins immediately for
all |x| < a and the problem is of class (1). If the heat flux is part positive and part negative
melting initially occurs only for those portions of the boundary where the flux is positive;
the problem is then of class (2). A point source of heat applied to the boundary results
in initial melting at that point only, and hence this problem belongs to the third category.

The present investigation is concerned with two-dimensional problems of class (1
for which a general method of solution is developed in Sections 3 and 4. Illustrative
solutions to problems of classes (2} and (3) will, however, be constructed in a straight-
forward manner by an inverse process in Sections 2.5 and 2.6,1 as follows: The concept
mentioned in the introduction, of a melting body extended mathematically to its original
dimensions is used. One assumes the fictitious heat flux on the surface of the extended
body to be known. The temperature condition (1) results in a transcendental equation
for the melting thickness (x, t}, and from the heat balance condition at s{x. 1) one obtains
the real heat flux.

2.5. Example of a problem of class (2)

Consider a semi-infinite, insulated strip (geometry shown in inset of Fig. 2), initially
at zero temperature. Let the boundary z = 0 be heated as follows:

<<t
(?T QO ™ {9}
—k—{x,0,1) = { i
oz } Qo (1+cos 7) t=t,
£ = «00 ~75 ~-50 -25 o} 25 50 75 [Rele}

L..\”““N

: T
40+ \\\\y?f’/
GD : rw{{}o Lottty
(£a0%y N 4 Qa{2+COSTRY , t>tm

od LT |

X = ap

‘h{x,t)ZZ/;;m{

100-A
T,k Tm 2
e - {ses)
PR SO
y = t i

Fic. 2. A dimensionless plot of the melt thickness vs. x/a for various values of time and for
m=n=~C=C =]

+ Such inverse solutions are of more than academic interest, since they often prove useful in the constructio_n
of upper and lower bounds to the solution of a more complex problem for which no analytical solution is
known. Such bounds have been used in [2,13-15] for one-dimensional problems, and in [16] for two- and
three-dimensional problems.
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where for t > t,,, Qo1+ cos(nx/a)] represents the real flux where s = 0 and the fictitious

flux where g # 0.
The temperature field is [17]:

T(x’ . t) 7Q0;{/( erfc Z( ) QO { -('rrz/a) |:1+erf<g\/‘[x(t m) 2\/ K(t"‘tm) )]

2
0Oa)
— plrz/® >t
e [ erf( Vr(t— 7 [ (t ﬂ]} Cos —
where
200+/(Kt)
=T, = N, 10b
ﬂxa 09 tm) Tm \/(ﬂ:)k ( )
It is convenient to use the following non-dimensional variables and parameters:
t—tp, =X _Z.
yz"tms P"“a: C_aa
(11)
e f e Q)
2\/(Ktm)’ 2\/(Ktm), pS\/(K)L '
so that the temperature field can be written as
T(p. 4, y) . .
- = ; LN f y—
T JIry+ Dlierfe ——— \/( +1 2\/71{ +er \/) \/y )

_ _ ,.;’_z_, n_ . 3 0
e [1 erf(zn\/th\/y)]}cosxp, y=0.

Along the melt line z = o or n{ = £ the temperature must be the melting temperature
T,.. Therefore

w

1= \/{ﬂ(y+1)]1erfc (§+1)+ﬂ{e (nS/n) I:I+erf( \/y__\_/@})]

—etﬂs‘/")[l-—erf(%\/w%)]}cos np, y=20, {>0.

This is a transcendental equation for the non-dimensional melting thickness &(p, y).
For short times it can be shown,t see [21], that a solution of the form

{13a)

L= ApNy+ ... y<I (13b)
satisfies equation (13a) where A(p) is the solution to the transcendental equation
Alp)
orte Ap) COs 1P, A{p) = 0. (13¢)

The initial extent of the melted region in the x-direction is obtained by setting 4 = 0,
which yields p = 1. Hence the portion |p| < 4 melts initially, and the portion < |p| < 1
does not. To calculate the growth of the melted portion with time, consider equation

t By verifying that, if £ = A(p)y", n # } leads to a contradiction.
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(13a) written at the extreme point of this region, i.e. where & = 0 and where p = py(y).
say. The result is

1= \/(y+ l}+—\7—erf Jycos[rpe(»)], {14a)
which for small times yields
_ 1 o Y 1 \//-V
poly) = 608 (~ 5 =550+ vy <L (14b)

Therefore, the melted region initially grows in the p-direction as \/(y)/2x, and initially,
as before, po(0) = 4. Therefore, this is indeed a problem of class (2).

The real heat flux in the melt region can now be found from the heat balance con-
dition, that is, with instantaneous removal of the liquid,

Jg coVleT
O(x, 1) = psL—é?—k[ (ﬁx)] e at z = J(x, t) {15a)

which, with the temperature (10a) and non-dimensional form, becomes

Q. . _2d ot :
G0 = a5l o o

S

Substituting from equation (13b) for the melt thickness and expanding for short times,
one obtains the real heat flux as:

Qo y) _ Alp) 1
Qo m \/ y . y<l

where, again, A(p) is the solution to (13c).

The real physical problem solved above is therefore the following. A constant heat
flux Q, is imposed up to the time of melting (t < ¢,). At t = t,, the real heat flux jumps
to infinity in the region |p| < 3, while outside this region, i.e. for < |p| < 1, the real heat
flux is given by Q{1 +cos np). For later times (¢ > t,) the real heat input decreases and
melting continues over the region |p| < po(y); in the region p, < p < 1, the heat input
is still Q4(1 4+ cos np). Note that the initially infinite melting rate corresponding to equation
(13b) is in agreement with relations (7b).

(15b)

(15¢)

2.6. Example of a problem of class {3)
Consider the semi-infinite strip of the preceding section, initially at zero temperature,
heated as follows

orT X
~k-5-£(x, 0,0 =0, cos-;, t >0, (16)
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both before and after melting. The temperature field is

Toz.0 = an{ ‘(m’[Heﬁ( =375 0)] (17

X
—e"ia [1 - erf(%\/ (k1) +2—ﬁ70)] } cos -

Since the temperature has its maximum value at x = z = 0, melting will begin there;
thus po(0) = 0. The relation between T, t,, in this case is

T(0,0,t,) = T, = —Q»%(—erf%\f(xtm). (17b)

With the non-dimensional variables and parameters of equations (11) the temperature
field becomes

T 1 w oL
ﬁ(p’g’y)_ww_Zerf(n/Zn‘){e [H-erf( Jo+1D /(»+1)>}

_en{l erf(—~\/(y+ )+\/(;i_l)>]}cosnp.

The melt thickness &(p, y) can now be found as before by setting /T, = 1 on the
melt line z = o; thus

U f | (™ :
Zerf(n/2ﬁ}{e ( ”[”erf( Vo+D- /(y+l)):|

"*”’[ —erl<—~\/(y+ }+\/ ¢ l)ﬂ}cosnp.

Expanding this transcendental equation in &(p, y) for short times and retaining first
order terms in &, p and y only, one obtains

(17¢)

(18a)

t nn 4
) — ~{nf2ny?, _ 2 AN
&p, y) N y=5 P erf(zn>+---,!plﬁﬂe(}},
(18b)

p=0; y<L
The growth of the melted region py(y) can be found by writing equation (18a) for
& =0and p = pol(y). namely
n T,
erf = erf (%\/(y%— 1)) cos mpoly). (19a)

Again expanding for small y and retaining first order terms only, the width of the melted

region is given byt .
T
exp [— (m) J
LA\

poly) = Y+ y<L (19b)

nnt erf —
2n

Obviously po(0) = 0, and the problem is indeed one of class (3).
t Equation (19b) of course could alternatively be obtained by setting ¢ = 0 in equation (18b).
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The real heat flux must now be determined. Using the heat balance condition (15a)
with the temperature (17a) the real heat flux in non-dimensional form becomes

Qp.y) _ 2¢¢ 1[ 1 cﬂ { s { (’n ; §
=" 24 J14+02 triin} — i{v J S
0, mﬁy+2 +n2(ﬁp ¢ l+erf\2n”(}+i) \/(};—}vl})

. ‘ o {20a)

. n g
+em™mM I —erf( = (y+ D+ — ) :
[ <2n\,(y ) N cos p
Substituting for &, and expanding for short times, one obtains:
i iy 2 )

g(p, y)= e W y <€ L {20b)
Qo myn

Therefore, the problem solved corresponds to the following heating history. The
heat flux is Q, cos np for all p until melting. At ¢ = t,,, the real heat flux is still given
by O, cos np except at p = O where a jump to the value

1 ‘
7171\/ b4 |

occurs. For t > t,,, the growth of the melted region is given by equations (18b) and (19b)
for the z- and x-directions, respectively. Note that the initial growth rate in the z-direction
is in agreement with that predicted by equations (7b), and the initial growth rate in the
x-direction is infinite.

2.7. Problems of class (1)

Problems of class (1) are mathematically simpler than those of classes (2} or (3)
because, although the shape of the solid-liquid interface is still a function of both x and
t, the position of the end-points of the interface remains fixed at x = +a; in other words,
the variable po(y) is absent. In the remainder of this paper, problems of class (1) only
are treated: in Section 3 problems in which the melted portion is instantaneously removed
are studied, and in Section 4 a type of problem in which both phases are present is
taken up.

3. TWO-DIMENSIONAL MELTING OF A FINITE SLAB WITH
INSTANTANEOUS REMOVAL OF THE MELT

3.1. Formulation of the problem

Consider a solid slab of width 2q, initially (¢t = 0) at zero temperature, insulated on
the sides x = +a and z = [ (Fig. 1), and let it be subjected to linear heat transfer on the
boundary z = 0. At some time ¢, the surface z = 0 reaches the melting temperature,
with the further condition, from equation (3d), that

Ty |
'—O:;—(X, 0, tm) > 0, all ixf <a, {21)

so that the problem is of class (1). It is assumed that the melted portion is immediately
removed upon formation.
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The unknowns T(x, z, t) and o(x, t) satisfy the following boundary value problem for
t > t,,: the Fourier heat conduction equation

2 2
{a o T} B i_f Il <a, glxt<z<l 121l (22)
F

_.+._.~___
&x?r o 8zt

with the conditions

]
Q(ia, z,ty =0, (22b)
Ox
Selo=0 (220)
(a4
T(JC, o, t) = Tms (22d)
‘ealeT oo
ax) oz T T =5 atz=dlxi), 22
k[”(ax)] 5 HhT= =00 O+pslzs  atz=dlx1) (22¢)
T(x, 2 ty) = Ty, 2) (221)
dx,t,) =0, (22¢)

where k, h, x, ps, L are constants, Q(x,t} is a known flux,t and T;(x, z} represents the
initial condition on the melting problem, that is a known function obtained from the
pre-melting solution. The pre-melting solution satisfies (22a) for 0 <z < [, 0 <t < ¢,
(22b), (22¢), with zero initial temperature and linear heat transfer on z = 0, which may
or may not be the same as that of (22e), with 4/t = 0.

Sometimes the assumption is made, in engineering ablation analyses, that there is
no heat penetration into the solid, or in other words, there are no thermal gradients in
the solid due to external heating. With this assumption the only equations that need be
satisfied are (22d, e, g), with the melt line given by

dd
psL—C;{ = Qfx, }+hT,. 23)

For large heat fluxes, such as, for example, those experienced by a body during re-entry,
this solution provides a reasonable upper bound.

To obtain a solution to the general problem formulated above, the solid region (which
at time t,t > t,, occupies the region J < z < [} is extended so as to occupy the region
0 < z < I. The temperature field Tg{x, z, ) in this extended region must satisfy the heat
conduction equation (22a), for 0 < z < [, the boundary conditions (22b, ¢) and the initial
condition (22f). Further, an unknown fictitious heat flux Q*(x, 1) is added at the boundary
z = 0, resulting in the following boundary condition there
T,
k é

'z

+hT, = —[0x, )+ 0*(x, 1)] atz=10, t>1t, (24

The functions & and Q* are such that the melting conditions (22d, e) are satisfied at
z = dJ(x, t) under the initial condition {22g).

+ The flux is in the z-direction; see [21].
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Only problems with symmetry about x = 0 will be studied, though it will be evident
that removal of this restriction would cause no difficulties. For these problems, then. let

Te(x, 2, 1) = Z Afz, t)cos EKE, {25a}
i=0 a
Tix.2) = Y Bgz)cosfg?Q (25b)
i=p
Oty =Y l)Jt)cosf§§E, (25¢)
i=0
I, 1) = Z Ei(t)cos@, (25d)
i=0 a
@mgp=ZFﬂnm%§ (25¢)
=0

Upon substitution of (25a, b, ¢, ¢) into equations (22a, b, ¢, f) and (24), the boundary
value problem on Ti(x,z, 1) is reduced to a one-dimensional problem for each of the
variables Az, t). With the transformation A/z, t) = Az, t) exp[ — x(in/a)*t] and the one-
dimensional solution for a slab under linear heat-transfer and under initial conditions in
terms of B, the following temperature field is obtained:

3] in 2 ’l-ﬂ' 2 ! , .
Tx,z,t) = Y exp| —x|—] tjsexp || — ) t,.| | Bdzhulz, t—1t,;2)dz
i=0 a; . a, o
k(' = C fim\? inx
+~}€ [ID{ty+ F{t)]exp| « —)T w0, t—1;2)de cos—‘—;,t S
T °

where u(z',t—1;z) is the Green's function or fundamental solution? for the slab under
the homogeneous boundary condition
k2240, 0)+ hu(0, 1) = O.
dz
This temperature field satisfies all conditions of the original boundary value problem

except the conditions (22d, €) on the moving boundary, and the initial condition (22g).
These equations take the form, fort > ¢,

- it \? i ir\2 }S\l
B a a {2’ Z,’ - m; d !
i§=:0 exp[ K<a) t]{exp[x(a) I QB'(Z iz, t—t,; )y dz

14 - . 2 7 Iy
+% f [D{t)+F{r)lexp {x (5;5) r} uw0,t—1; 9 dr} cos%)f =T,
f”‘ Ed

(27a)

+ When u satisfies this particular boundary condition it is sometimes referred to as the Robin’s function.
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a 2 o0 . 2 s 2 i a
k [l + (6—)?) ] 2 exp[— x(%) t]{exp[rc(%> tm] SO B,.(z’)—ag(z’, t—t,; Hdz

T ‘ 2 .
+ x S [D{1)+ F ()] exp [x(gt-) r] QE(O, t—1;d) d‘t} cos X (27b)
k o a 0z a
d inx dg
= — Dyt [ ——hT,,
Z,O {t) cos pas psk=—hT,
and

E{t,) =0, i=0,1,2,.... (27¢)

Where the variable o appears in these equations its series form (25d) is understood.

Equations (37a, b) are two coupled, non-linear, integro-differential equations in the
unknowns F(t), E{f); once F {t), E{t) are found, the solution is complete since all equations
of the original boundary value problem are satisfied. The temperature field is then
obtained directly from equation (26). Tg(x, z, t), of course, represents a temperature field
in the entire slab 0 < z < [; however, only the temperature field for z > o has physical
meaning, and corresponds to the temperature field in the solid region.

3.2. Example for Section 3.1
A specific example will now be considered, in which | = o0, h =0, and the strip is
heated as follows (see inset of Fig. 2):

Q O<t<t,
0 (28a)
Ofx, 1) = . X
0o 1+CQL1+Cl cos )| t>1,
where Q,, C, and C, are constants satisfying the inequalities
CO 2 0,
(28b)
!Clt —<—— 1:
which insure that the problem is one of class (1)1
The pre-melting solution is
_ 200/ (K1)
T(x,z,t) = X ierfc 3 \/ 0y O<t<t, (29)
from which
200/t z 2004/ (t,0)
T X, = m N T ES _,.9.._..L
1, 2) o erfes oty m R (30)

The Green’s function is

e __(_z_-_zz (z+z)
Uz, t—ti2) = 2\/’[nrc(t— t)]{exp[ 4t — T)J—%-exp [_ 4x(t——'c)]} D

) T This follows immediately from (21) and the one-dimensional initial behavior as in the problem of Section
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and the general equations (27a, b) become:

7 T et

JETS " P — N2 52 P ’
yE Fi ,. L. expy — R(EE) T+ — |bdrcos = = T, —2~Q—°5j(~m)ierfcw: —
kym =, 0 VT a 4kt a k 2/(kt)

X

_.,.Q.L NI (2= m)]1erfc2 /[ ((z}—; ) (320)
Qo;::’ {exp( —dja) 1+erf(— Ml —1,)]— 3 /[x(j;rm)]\)J |
2\/;@@(%5)"' B 5‘0 UL S
—pSL +Qoerf2 /( )+rooe t5 Nii (j*, iy
+0,CoCy [1 -—%{exp( —nd/a) (1 + erf[g\/[lc(t* tm)}wvz—\j[;fgj‘;;ﬂ)
+exp{na/a) (l —erf E\/ [x(t~t)] +'2'VTK(—f;“t;ﬁ} )H cos ? (320)

0o\ ) J
( ) QO [erfcz\/(m)+ (,0 erfcimr;”ﬁ +
CoCy - 1 n J
+ 02 {exp{ —ndfa) (\1 +erf [E VIt —1,)]— 5%?})
+exp(rd/a) | 1—erf] d /[x(t ~tm)]+wm-ﬁ~—w- cos 7p |.
o 2 3=t

The following non-dimensional variables and parameters (cf. [11]) are introduced:

¥ _ X =z (33
.} - zm k3 P - a 3 g a 1(}") Q(} (. )
J a _ Qov'tm I_:?“
$= 3ty N R N = A LS N 8
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Equations (32a, b) in non-dimensional form are then:

© (VE(y— i \2 2 ‘
DR e N G S

{ — Iy + D]ierfc N i 1)} ~2Co/(my) ierfc%

(34a)
CoCan{ oo
stofenfofiod]
e o
i+ii§2£§ y x(y yl)ex _ E)z +§ d COSI'TC,O
n*\ép \/Tfi=o 0 i’ P \2n N V1 n
265 5 é 1 —(nifn ——
= —an+erf\/(y+1)+C°erf7§+cocl[l~§{e ( ”<1+erf[ vy D )

¢

no, & 1 (282 £
+ "% <1~erf[§;\/y+:/—;]>}] cosnp-;5<a)) [erfc \/(y+1)+Cﬂerfc~\/—,§
CoCy | _(utim e (1 _ apt| <
+T{e ( />(1+erf[ Jy— \/])+e / (1 erf[zn\/y+\/y]>} Cosnp],

for y>0,lp| <1, &p,») > 0, and
E)=0 i=0,1,2,.... (34¢)

A very short time solution can be found as follows. It was seen in equation (7b), that
for a finite jump in flux at ¢ = ¢t,, the initial melting rate is finite; hence ¢ oc y and

hm~—~—>0

y=0 \/)’

Therefore the exponential appearing in the integrands of the above equations, is, for

small y,
in 2 52
eol-| ()]

except for, y, — 0, i.e. very near the lower limit of integration, where it goes rapidly to
0. Therefore, expanding the right-hand side of (34a) for small y and approximating the
exponential by 1, the following short time integral equation is obtained:t

) f ’{}i/ PO 4y, cos inp = —2Co /X1 +Cycosmp+ ...},  y< 1. (35a)
i=0 v 1

t+ The similarity of this reasoning with that of {11] is evident. An alternative procedure consists of a develop-
ment analogous to that of [21]

6
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This is a particular type of Abel's integral equation [18] whose solution is

Fo()’) = “Co
Fi(y) = —=C,C, y<&i (35b)
Fin=0 i=2234...

Substitution into equation (34b) and expansion of the right-hand side for small ¥ leads
to the following differential equation:

. wr

—CO[H—C1 cosnp+...}_ _2 > ‘ (y)

m i

=0

cosinp+... y<l1 (36a)

whose solution, satisfying the initial condition on E(y), is

m
Eo(y) = 5 Coy,

m
E(y) = 5C0C1y, y<i (36b)
E()=0 i=234,...

The above solution provides a starting response, valid for y < 1. To extend the

range of validity of the solution in the time domain, expansions of the following form
are considered:

* x
g (p,y) = (=Co—CoCycosmp)+ Y (a/y+apy+apy*+.. )cosinp,  (37a)
0 i=0
mC mCyC,
é(p,y)=< 2°y+ 5 vcosnp)—l—z (b y+biyy?* +bizyi+. . ) cosinp. (37b)
i=0

These series can now be substituted into equations (34a, b) and the resulting expres-
sions expanded in powers of y. A solution can then be constructed by equating coeflicients
of like cosines and like powers of y. After considerable effort,} the following solution
for the fictitious heat flux and melt thickness results:

2 2mCy\ , [ 3ImC, 3m?C3 3m*CiC* i
0 A% . .

+[—COC1+2mCOCl\/ +( m*C,C, — 3230C1+3m2C2C> ]Cosnp (37¢)
20202
+[3’f S oCy Ly+.. ]Cos2np+....

t A list of the principal integrals arising in the process of obtaining this solution is given in [2[].
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mCq <2m 2m C’0> +< m? SmEC _m’Cj
f(Pa)J): 2 —y+ I 3\/75 4\/7Z ' 8

 mCo_3mCYCE *nﬁC%Ci) s ] +[mcnc1 ye WECoCy s

4 16 8 2 3/n a74)
N 3m*C,C, __m3C§C1 m3cé+”13cocz)y2+‘ * } cos mp
8 m 2 3 2
322 32
+ [<-3m :\(;"C‘A-m CSOC’>y2+, : ] cos2mp+....

The unknown temperature field can be obtained from equation (26) (or, more con-
veniently, it can be deduced from (34a) as

22
I DA A T

+/[nly+1 ]1erfc\/(yc )+CQ\/(15}:)1erfc\/ (38a)

3]l e

and with the fictitious heat flux F{y) it becomes:

%E(P, L, y) = Inly+ D}ierfe .\_/_5%64— [=2+2/(mmColyierfc %
Ham— 40 Co = GmCo-+ 6/ (A Ci-+ 3 (AW CRCTY? erte T+

+ {QJ(n}mCOCXyizerfc %+[—~ 4, /(mm*CoCy —6mCoCy + 12,/ (m*C3C, (38b)

3
A et Y C] yt i3erfc Eg--f— .. }cos o
VY

[3\,(1r)m2CgC yiid erfc-£+ }cos 2np+ ...

NA

This temperature field has physical meaning, of course, only for { > &.

The solution of the problem is now complete. Curves showing the variation of the
melting thickness with x and ¢ are presented in Fig. 2 (on p. 212). The temperature along
the axis of symmetry is plotted for several values of time in Fig. 3, and the temperature
field at a fixed time is shown in Fig. 4. The dotted portions of the curves of Figs. 3 and 4
represent the temperature field in the fictitious region.
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F1G. 3. A dimeusionless plot of the temperature field for the melting problem vs. z/¢ along the axis
of symmetry for various timesand form = n = C, = C; = |
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F1G. 4. A dimensionless plot of the temperature field for the melting problem vs. x/a for y = 0-03,
at various depths in the strip and form =n = Cy = C; = 1.
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3.3. Discussion of the solution of Section 3.2
The following remarks concerning the solution presented in the preceding section
are of interest:

(1) Two one-dimensional solutions of interest can be obtained directly from the
two-dimensional results. For C, = 0, the solution for the problem of a half space under
the action of a continuous heat flux @, is obtained. The resulting melt thickness is then :¥

mt o, dmf, 16m>
- —— |t .. 39
&y = y iy’ 15“( —mieag )t (39)

and checks identically with that given in [11]. For C, = 0, the half space is subjected
to the flux Q, until melting occurs, at which time an additional flux @, = Q,C, is added.
The melting thickness here is given by

mCy  (2m 2m2CO) ; m? 3m2C _mC3 m3C) v
- e 40
<U) 2 y+<3n ENE: + 4\/7: LNE § 4 v+ “0)

and was discussed in Section 2.3.

{2) It can be noticed that, although the applied heat input is described using only
two terms of a Fourier series, all terms appear in the solution. However, for very short
times, an essentially one-dimensional behavior prevails, with the temperature and the
melt thickness proportional to the heat input. The power of the leading term in y in the
coefficients of cos 2np is higher than that in the coefficient of the first two terms of the
series, and it may be conjectured that the leading power of y will increase with the
successive cosine terms. The validity of this conjecture was not tested, though it was shown
to hold for the next term for the special case in which C, = 1, In this case the next term
in the solution for the fictitious heat input Q* is

41 o 16m\ amicy (14 18) L (% 15 6mC3
¥ {[37:(2 (= ENG +mCo 3 on?) T < 3n2+3\/n n

4 2 2,2 3 33
«m3C§(—§~+-—I>] +[E—5m(30—8m C9+4m C0+10m c3
Jr o 3nd 6n 7 3Jn Jr

. (128 14 32128 20
C0(92 3> C<9 ,1+3\/ >:|cos1rp

+[~§—m2C° 362( 32 3\/) 36},(3\/ 4 )] cos2np+{3\/ ]cosfinp}

while the next term in the solution for the dimensionless melt thickness & is

am (1 16m 4 128) Im*CY 4m*Cy  32m*C3
3 AL Nl bt B R D 3}
{[ (2 " 37:%) " C°<157r+451t2 0n  15gn T 3t

57 4 - 4 128
+mr O e —— —_—— it 3
" 0(20\/7r+151r%)]+[ 302 ™ Comm C°(5ﬂ+457z

t The last term is obtained from the solution given in (2) below.
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3m*Cy dm*C, {8 128 ) m*C3
e e CH o p o J 2 20
Se 15Un Tt (ISVf’n 457/  Bm_ cos e

-

Im*Cy 32m*Cy 19 4 R
TS A T 2mpt | < 25C0 | s 3mpl
'*[ 0m a5 ”Ich(éﬂqf 1573) | 50T T 20 gn [ €0

(3) The numerical results shown in Figs. 2, 3 and 4 were obtained using all of the
terms of the series (37b, ¢). In all cases, however, the contribution of the last terms of both
the series in t and x was small compared to that of the preceding terms.

{4) Examination of Fig. 4 shows that the temperature distribution is markedly two-
dimensional near the heated surface, but becomes increasingly uniform as one proceeds
into the interior of the strip. This is to be expected since the pre-melting solution is one-
dimensional.

4. TWO-DIMENSIONAL SOLIDIFICATION OF A SLAB WITH
ZERO SUPERHEAT

4.1. Formulation of the problem

The slab of Fig. 1 is assumed to be initially liguid and uniformly at the melting
temperature 7, ; it is subjected to linear heat transfer on the boundary z =0 for t > 0
such that

T
CNx0,00<0  alllx<a 41)

insuring that the problem belongs to class (1). Since there is no superheatt solidification
begins immediately (at ¢ = 0), and the temperature in the liquid, of course, always re-
maining at T,

The temperature tield in the solid, T{x, z,1), and the solid thickness w(x, 1), measured
in the z-direction, satisfy the following boundary value problem for ¢ > 0: the Fourier
heat conduction equation

~2s n2 o)
a((z OT ~(~I Ix| < a0 <z < a(x, 0 (42a)
Oox? - az? ot
and the conditions
Tsani=0 w2
ex
T v ;
k:;(x, 0,0+ hT(x,0,t) = Qlx, t), {42¢)
iz
T(x, 4, t) = T,, (42d)
22 o e
k{l —{-(L—{) Jg = pSL;-l] at z = J{x, 1), {42¢e)
0x/ jéz t

+ If the superheat were not zero, there would be thermal gradients in the liquid as well as (he so.lid; irf such
a case the present analysis can be extended in a manner analogous to that of [11]. For a physical discussion of
the assumption of zero superheat and freezing problems in general see for example [19].
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T(x,0,0) = T,, (42f)
4(x,0) = 0, (42g)

where x, k, h, ps and L are constants, and Q(x, t) is a known flux (heat is extracted from
the solid). This formulation is valid for J(x, 1) < L.

The solution will be again obtained using the concept of a fictitious body, in which
the real body is embedded, under a fictitious heating condition. However, the approach
here 1s different from that of Section 3 because of the presence of both the liquid and solid
regions and because the boundary z = 0 is now a real boundary where condition (42c)
must be satisfied. The solid region can, however, be extended tot z = co, thus again
replacing it by a fictitious region of constant geometry, and a fictitious initial temperature
distribution T*(x, z) can be introduced such that the interface conditions on z = J(x. 1)
are again satisfied. Ty(x,z,¢), the temperature field in this extended region, satisfies
equation (42a) for z > 0, and (42b, ¢}. It must further satisfy the condition

Tgl(x, 2, 0) = T*(x, z), (43a)
where, from (42f),
T*x,0) = T, (43b)

Considering symmetry about the z-axis, we may introduce the following Fourier
series :

Telx, z,t) = ii) Afz, t)cos ?;, {44a)
T*(x,z) = :0 Byz) cosi%’f, (44b)
0.0 = T Difjcos (o)
Hx,t) = 50 E) cosi—z)—c. (44d)

Upon substitution of (44a,b,c) into equations (42a), (42b, c), (43a) and (43b), the
boundary value problem on Ty is reduced to a one-dimensional problem on each of the
functions Az, t). With the transformation

Afz, 1) = A¥z, 1) exp[-— K(ig)zt]

the following temperature field is obtained

o . 2 v el
T(x, 2, t) = Z exp[——xcﬁ) t] [j Bi(z')u(z’,t;z) dz’
i=0 a o
x in\? inx
+; Dfvyexplrl— | tju(0,1—1;2)dt| cos—,
o a a

+ jl‘he length [* of the extended solid may be chosen at will, provided that I* > ] as long as o < !; cf. {11},
In this case [* = ¢ is the simplest choice.

53)
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where u(z',t—1;z) is the Robin’s function for the half space z > 0. Condition (43b) to
be satisfied by the fictitious initial temperature distribution becomes

By(0) = T,
_ (46)
B{O)=0 i=12,.. .
The temperature field (45), with conditions (46), now satisfies all the conditions of
the original boundary value problem with the exception of (42d, e, g). Upon substitution
of (45), these equations assume the following form

50 . N\ 2 be
Z CXP[“ K(Ln> t}{j Bi(z’)u(z’,t; Hdz’ +
i=0 a o

. G . (47a)
+Es D7) exp[x(l—n> rJ u©,t—1; 9 dr} cosll[5 =T,
k 0 \a/ a
CoV | & in\? ;"
k 1 _ —_ —_ {7 ’ . i
[ +<6X>:‘i;)exp[ K<“)€HL Biz Pzz,t,d)dz
, (47b)
K in Ju inx od
+E jo Dit)exp [x(;) I}FZ{O, t—1, ) dr} cosT = pSLE’
and, with (44d) _
E0)=0 i=012,.... (47c)

Equation (47a) requires that the temperature along the melt line z = s{x, ) be equal
to the melting temperature T, while equation (47b) is the heat-balance condition on
- = Jix.1). The determination of the functions Bi(z), E,-(t) which satisfy equations (46)
and (47) completes the solution to the problem since all conditions of the original
boundary value problem are then satisfied. The temperature field is then obtained
directly by substituting the quantities B,(z) into (45); of course, the temperature field as
obtained has physical meaning only for 0 < z < J(x, 1).

As a one-dimensional special case of the above formulation, the problem of Neumann
can be considered. In that problem [2] the temperature at z = 0 is held at T = 0 where

T,, > 0; alternatively, a heat input
kT,

. kT
mo Jetlerfl =

~erfi/(nxt)’ kpsL/n

may be prescribed there. Let Dy(t) = Q(t) and D; = 0, i > 0 in equations (47a, b); with
B{z) = 0, i > 0, the result is

U (g—2) RCaxs 1O I '
2——\/(;}'{?)‘8‘ BO(Z ){CXP [_ 4Kt ]""Cxp[ 4Kt :l}dz erf}.erfCZ\/(Kt) - Tm’ (49d)

0

k . (9—2) (9+2)? . kT,
—— e ’ —_— ZI — — ’ — d — I,Al»\*._ﬂ..gf,(
4 JmiE L Boz ){(d ) e"p[ Akt }L (9+2) eXp[ mr || T nerts
du
dr’

(48)

o) =

~ pL (49b)
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The solution to equations (49a, b) can be verified to be
Bo(z)) = T, jerf i,
o(z) / ' (50)
At) = 24/(xt).

The solid thickness (1) is in agreement with Neumann's result. Neumann’s temperature
distribution in the solid, namely

T(z,0) = el \/ o (51

is obtained immediately by substituting B, into equation (45).
4.2. Example for Section 4.1

Equations (47) will now be solved for the particular case in which h = 0 and the heat
flux O(x, t) is given by

O(x, 1) = QQ(I +Ccosfa’f) t>0,

where Q, and C are constants satisfying

(52a)

ICl <1 (52b)

insuring that the problem is one of class (1).

With (52a) and the appropriate Green's function, i.e. equation (31), equations (47a, b)
become

> expl— k(in/a)?t] ©_ , (g—z) (d+2) ’ inx
i;) Ww J i Bfz ){exp [— mz’;t—’] + exp[ 4K?-~J }dz cos —
- 2Q()\'/(Kt)ierfc g __QC

a T J
p e 2 [exp(-7zd/a) (1 +erf[—5\/(xt)~ 2\/(;«)]> (53a)

—exp(nd/a)(l erf[ = Jwt)+ N m .’Ef =T,
0d > expl—«(in/a)t] [© - | , (9~12)?
Rl R L R

ki
a n2
+(d+z’)exp[v£~;}§-}}df X Qger fosr— \/( - (53b)
Qo

+——2~[exp( nd/a)( +erf[§\/(;ct)— /( t)]>+exp(nd/a)( werf[ (ht)+2\/( t}ﬂ

X cd
coswv} = —pgl—.
a
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These equations can be put in dimensionless form by means of the following non-
dimensional variables and parameters:

b _4 _E. B,
}‘62/41(’ 5“a~ Ei‘-”&"’« B() = :I‘;"
(54)
p:i' C:E' -—-..Q.Qg M o= Qoa ‘
a’ a kT, " 2pgkL

and then become:

= expl— (/2] (* (-0 +{)?
;O w—w— jo B{({ ){exp[— ; ) ]+exp[—(—§—f;@~j”d5' cos inp
1 pyioriet P exo 1 ent| Ty €
=1+p,/ yzerfc\/,y+ o {exp( ng)(l +erf {5\/ y —\/Y] )
—exp(né) (l -erfB\/ y+%] )] cos mp, (55a)

& keGP, mofe-ome] 457

"2
+(§+C')exp[”g~i—c—l—]}dl§’ smp_m 2%
Y m 3y

+ {1 +(g>2}[erfc%+c{exp( nf)(l +erf[ Jy——%J)

+exp(né) (1 —erf [g\/ y +7€;] )} cos np] , (55b)

while the conditions on the temperature and the melt thickness (46) and (47¢) respectively
become:

Bo(0) = 1,

{55¢)
B{0) =0 i=123...,
E0) =0 i=012.... (55d)

As was the case for the melting problem of Section 3, a short time solution will be
found. Proceeding as before, the first term of the short time solution is obtained, a
general series is then assumed and the coefficients of like cosines and like powers of y
are matched to obtain the unknown constants in the series.

The right of (55a) expanded in y is:t 1+ p/\/nyy+(Cp)//nyycosnp+ .... If only
the first term is retained, and since exp[—(in/2)?y] = 1 for small y, this equation reduces

+ This expansion is valid since, as follows from equations {7b),
lim Sy /v — 0.
y~0

The alternative procedure of [21] can also be used to give the same result.
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x ® 'y is
5 \/(;y)s Bf(C’){exp [#(é yg) ]+exp[*gjf—)]}dc cosinp = 1. (56a)

i=0 0

to

The solution to this set of equations satisfying (55c) is readily verified to be
BO(‘:) = 15
B{)=0 i=123,....

With these values of B{{)'s the left-hand side of (55b) becomes zero. The right-hand
side expanded in y is
2 3 2 ¢ 2C ¢ ]
T 24—+ .| C——— —+ ... cosTp.
moy " Jmy [ Jr Ay
Retaining terms of the lowest order only, one obtains the following set of differential
equations:

(56b)

2 & 2EW)

cosinp = —(1+Ccosnp) (57a)
mi<o 0y
whose solution under initial condition (55d) is
m
Ey) ==
o()’) 2 y,
mC
Ei(y) == (57b)

E(y=0 i=234,...,
so that, for very short times

p,y) == y(1+Ccosmp)+ ...y < 1, (57¢)

(ST

in agreement with the result given in equation (7b).
To extend the validity of the solution in the time domain, consider the following
series
T*(p, {)
Tm

=1+ ) (ayl+apl®+a;0%+ . )cosinp,
- (58)
m © A 5
p-y) = 5y(1+C cosp)+ Y (byy* +by? +bisy*+ .. ) cos inp.
i=o

A formal solution is constructed by substituting these series into equations (55a, b)
and by equating coefficients of like cosines and like powers of y. The unknown initial
temperature distribution and thickness of the solid are finally given by:

T* . C2 2C
100 = [H—pl—mp (1+7>C2+ ]‘F (Cp(—2mpCC2+7-c~6-pP+ > cos np

CZ
+(ﬁﬂ”2_~g2+ ) cos2np+ ...,

(59a)
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m  m 3C 1 ITmCc m 3¢ |
¢lo, y) = [2)’_‘4—<1+—2—>y + . J [—z‘y-—j(?C—F«T)} + . J COs TP

3 3,22 o] 3C3
+ ——8-mCy + ...]cos2mp+ ——T6—) 4+ ... ]cos3mp+ ...

{39b)

The temperature field obtained by substituting the fictitious initial temperature
distribution into (45), or, more conveniently, from (55a) is

oo i) | oo
Tm(P,C,Y)- [l+pg"~mp<1+~2-)(5+£2 + .|+ ”—g{ 1 +erf —\/y—v~—yJ>
o for e enf e -(3) o reres| (5o
e( er [2\/y+\/y +Cp [=exp 3 y+y +Cpl exp 5 erf\/}
\2 2c 2 - , 2\
‘2’"”“""[-(’-5) | (o) =5 | =(3) [f | (5]

b 2 , ’
+¢ y+C rf by cos np+ -Ln—pc—e‘"zy £+C2 + ... |cos2mp+ ...,
\/y 2 2

which, of course, has physical meaning only for 0 < z < a(x, t).

The solution of the problem is now complete. Curves showing the variation of thick-
ness of the solid with x and ¢ are presented in Fig. 5. The temperature along the axis of
symmetry is plotted for several values of time in Fig. 6, and the temperature field at a
fixed time showing the variation in x is plotted in Fig. 7. The dotted portions of the
curves of Figs. 6 and 7 represent the temperature field in the fictitious region, z > J(x, 1).

(60)

LiQUID

AT T=Tm
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FiG. 5. A dimensionless plot of the solid thickness vs. x/u for various values of time and for
m=p=C=1
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FIG. 6. A dimensionless plot of the temperature field for the solidification problem vs. z/a along the
axis of symmetry for various times and form = p = C = 1.
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Fic. 7. A dimensionless plot of the temperature field for the solidification problem vs. xfa for y = 005,
at various depths in the stripand form =p = C = L.

4.3. Discussion of the solution of Section 4.2

The following remarks concerning the solution presented in the preceding section
are of interest.

(1) The one-dimensional special case in which C = 0 has been solved by Evans et al.
[20]. The thickness of the solid in this case is, from equation (59b),

3
= gym';—-y% (61)

in agreement with [20]

(2) The remarks, given in Section 3.3(2), concerning the character of the terms of the
Fourier series and of the powers of y appearing in the Fourier coefficients are again
valid here. Note that in the present solution only integral powers of y appear in the
series given.

(3) As in the example of Section 3, the contribution of the last term of the series
considered in the numerical calculations was small compared to that of the other terms
in the series.

(4) Note that the thickness of the solid is extremely small at x = +a in Fig. 5. The
slow growth of the solid at these points is due to the vanishing of thermal gradients there.
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Zusammenfassung-—Zweidimensionale Schmelz- und Erstarrungsprobleme werden in drei zweckdienliche
Klassen engeteilt, und eine allgemeine Methode zur Losung der in eine dieser Klassen fallenden Probleme
wird angegeben. Bei dieser Methode verwendet man das Konzept eines fiktiven Korpers konstanter Geometrie,
in welchen der wirkliche KSrper eingebettet ist (dic Abmessungen des letzteren dndern sich mit der Phasenlage).
Der fiktive K&rper befindet sich unter der Einwirkung eines fiktiven Wirmeflusses oder (bei einigen Problemen)
einer fiktiven anfinglichen Temperaturverteilung. Das in diesen unbekannten, fiktiven Gréssen formulierte
Problem fiihrt zu einem Integrodifferentialgleichungssystem mit mehreren Unbekannten, welches, entweder
zahlenmissig, oder in Reihenform geldst werden muss. Zwei Probleme werden im Einzelnen behandelt. In
dem ersten Problem wird das Schmelzen eines begrenzten, isolierten Blockes formuliert, von dem die Schmelze-
sofort entfernt wird, und ein Beispiel fiir einen einseitig begrenzten, isolierten Streifen wird angegeben. In dem
zweiten Problem wird das Erstarren eines begrenzten, isolierten Blockes formuliert, der nicht iiberhitzt wurde,
und ein auf einen bestimmten fritheren Abkiihlvorgang zutreffendes Beispiel wird angegeben. Bei beiden
Problemen werden zweidimensionale Effekte durch riumliche Abhingigkeit der Erwidrmungs- und Abkithlungs-
bedingungen hervorgerufen, und die Losungen in kurzzeitiger Reihenform entwickelt.

AgetpakT—IIpobiiems! B ABYX WIMEDEHHAX OTHOCHTEIBHO UIGBICHHS 1 3aTBepAeBanud yiuobHo nenatcs
Ha TPH KA0Ca, HTaKKe JacTes obwnil MeToA AN peweHns npobnem OAHOTO W3 3THX K1accos. JTOT MeTon
YTHAMIHPYET NOHATHE OUKTHBHOIOC TeNa ¢ NOCTOAHHOR reomeTpucH, B KOTOPOE BKAIOYCHO DEABLHOC
TeJ10 (M3MEPEHHA KOTOPOTO MEHAIOTCA B 3aBUHCHMOCTH OT U3MeHeHus (aipt); Ha QUKTHBHOE Teso aeicTayeT
(UKTHBHRIH [OTOK TEIUIOThI WilM, B HEKOTOPbIX npobiiemax, (QUKTHBHOE HakajibHoe pacnpefeneHue
Temnepatypel. Takum o6pazom npobrema, GopMmysupoBaHHas B ITHX HEU3BECTHBIX DUKTHBHBIX BENHYHH,
naet B pesyabTaTe rpynny WHTerpo-aud@epeHunansHbBIX  yPABHEHMH 118 COBMECTHOTO PELUEHNH,
yucnenHo uau B hopme panos. [Jse npobriemsbl pacemoTpedst noapobuo. B nepsoil npobneme BhipaxaeTes
B OpMYNe MAABAEHHE KOHEYHOH WIONMPOBAHHON MIMTHLL NPH YCAOBHH HEMEUICHROTO yAameHus pacs
nnasieHHoM haibr, NACTCH NPUMED A NoayBeckoHe HO! HICIMPOBAHHON NAAHKH. Bo sropoit npobaeme
BhIpaxaercs GopMynoil 3aTBepaeHUe KOHEYHO! H30.1MPOBAHHOMN TUAMTEI C HYJCBBIM NEPCrPeBOM 1 AaeTcs
npuMep cheuu brueckoit HCTOPHK oxaaxaeHns. B ofeux npobiieMax NpeACTaBICHb! ABY-MEPHbIC HpdeKTol
MOCPEACTBOM MPOCTPAHCTBEHHBIX BAPHALMIT YCIOBHI HarpeBaHus MM OXJAXKIAEHUS W BLIBEACHbBI PEILCHUA
KOPOTKO-BPE MEHHBIMH PSIAMH.



